Электрохимическая коррозия нержавеющей стали

Содержание

Электрохимическая коррозия нержавеющей стали — Справочник металлиста

Электрохимическая коррозия нержавеющей стали

Говоря о коррозии, можно обозначить данный процесс как нарушение структуры материала под воздействием физико-химических проявлений окружающей среды или химически агрессивных сред, с которыми любой конструкционный материал контактирует в процессе эксплуатации.

Наиболее распространенной разновидностью коррозии является коррозия металлов, среди которых особо подвержено данному разрушающему процессу железо — базовый химический элемент в составе стали. Для улучшения конструкционной прочности, физических и химических характеристик, сопротивляемости коррозии, сталь подвергают легированию, что подразумевает введение в состав ферритового сплава дополнительных химических элементов, таких как хром, никель, вольфрам, марганец, молибден, титан и прочих.

Краткая характеристика нержавеющей стали

Сталь, легированная хромом, называется нержавеющей сталью и характеризуется наличием оксидной пленки хрома, способной противостоять различным воздействиям и самостоятельно восстанавливаться под воздействием кислорода.

Нержавеющая сталь производится двух типов: 304 тип содержит 18% хрома и 10% никеля; 316 тип содержит 17% хрома, 11% никеля и 2% молибдена. Включение никеля в состав нержавеющей стали, придает ей дополнительные прочностные свойства, а молибден улучшает стойкость стали под влиянием агрессивных жидкостей.

Коррозия нержавеющей стали происходит вследствие нарушения слоя оксида хрома, что вызывает окисление незащищенной ферритовой составляющей с образованием оксида железа бурого цвета.

Классификация видов коррозии нержавеющей стали

В зависимости от процессов, приводящих к разрушению нержавеющей стали, и условий их протекания, коррозия бывает следующих видов:

щелевая; контактная; под напряжением; при трении; при погружении — полном, неполном, переменном;

прочие.

Виды коррозии по типу сред, воздействующих на поверхность нержавеющей стали:

коррозия в электролитах; коррозия в не электролитах; коррозия в атмосфере; коррозия в газовой среде;

прочие.

Исходя из объема и локализации разрушения нержавеющей стали, коррозия подразделяется на:

сплошную — равномерную и неравномерную;
местную — точечную, сквозную, структурную, расслаивающуюся, ножевую и другие.

Наиболее часто применяется классификация коррозии нержавеющей стали на химическую и электрохимическую, в зависимости от механизма протекания процесса разрушения.

Конструктивный метод

Действенным методом борьбы с коррозией нержавеющей стали выступает, так называемый, конструктивный метод, заключающийся в проектировании такой конструкции из нержавеющей стали, чтобы узлы сочленения деталей были максимально защищены от попадания активных сред на поверхность стали с нарушенным слоем из оксида хрома. Для защиты мест соприкосновения конструктивных узлов от ржавления, применяются уплотняющие элементы и герметики.

При креплении деталей из нержавеющей стали методом сварки с последующей зачисткой швов, происходит истирание слоя оксида хрома, что приводит к появлению ржавчины в ходе эксплуатации изделия, поэтому сварные швы требуют обработки специальными грунтовками.

Контакт углеродистой стали с поверхностью нержавеющей также может повлечь образование ржавчины. Из углеродистой стали изготавливают различные крепежные элементы — болты, гайки. шпильки, которые необходимо изолировать от поверхности нержавеющей стали уплотнительными деталями.

Возникновение и быстрый прогресс процесса ржавления наблюдается при повышенных температурах и воздействии горячего пара на изделие из нержавеющей стали. Большому риску образования ржавчины также подвержены вращающиеся в водной среде детали механизмов, изготовленные из нержавеющей стали.

Ударная волна, возникающая при работе, например, лопастей электро-насоса, выбивает микрочастицы оксида хрома с поверхности нержавеющей стали, что способствует выпаданию ржавчины на поверхности нержавеющей стали.

Правильный подбор мощности оборудования, работающего в пределах критичных скоростей вращения, обезопасит детали из нержавеющей стали от возникновения ржавчины.

Выбор правильного метода обработки

Дополнительным методом в комплексе мер по предупреждению ржавления изделий из нержавеющей стали является правильный подбор метода ее обработки. Поверхность нержавеющей стали, обработанная электрическими методами полировки, более устойчива к ржавлению, чем в тех случаях, когда применяется механическая полировка. В результате полировки с применением механических средств, поверхность нержавеющей стали под слоем оксида хрома более шероховата, что приводит к образованию ржавчины при малейшем повреждении защитной пленки.

Самым разрушающим воздействием на нержавеющую сталь, как и на любой другой материал, обладает водная среда в виде влаги, осадков, конденсата. Особенно разрушительным для нержавеющей стали является содержание производных хлора в воде. Очистка, фильтрация и умягчение воды снижает риск ржавления нержавеющей стали, соприкасающейся с данной средой.

Первичная ржавчина, образовавшаяся на нержавеющей стали может быть удалена промыванием чистой водой. Удаление более выраженной ржавчины с поверхности нержавеющей стали можно выполнять методом шлифовки и полировки, а при еще более глубоком поражении поверхности нержавеющей стали ржавчиной, применяется вытравливание кислотами — лимонной либо щавелевой.

Источник: http://westwerk.su/poleznaya-informatsiya/informatsiya-o-nerzhaveyuschey-stali/2013-08-12-14-00-20

Виды коррозии нержавеющей стали

Как и все металлы, нержавеющие стали в некоторых случаях могут подвергаться коррозии равномерно по всей поверхности. Если среда не обладает значительными окислительными свойствами, защитная пленка на поверхности металла может в конце концов исчезнуть, что приводит к общей коррозии (неустойчивая пассивность). Более того, состояние поверхности металла влияет на природу его пассивности; коррозионная стойкость максимальна, если поверхность металла не загрязнена частицами железа или различными отложениями.

Межкристаллитная коррозия

Межкристаллитная коррозия нержавеющей стали происходит в основном возле сварных швов. Она может возникнуть также в результате горячей штамповки или термической обработки металла. Это явление обусловлено локальным снижением содержания хрома при анодном растворении карбида хрома, который выделяется по границам зерен возле сварных швов при температурах 400—800 °С. В кислой среде сцепление зерен при этом нарушается и металл становится хрупким.

Развитие межкристаллитной коррозии, которая характерна для аустенитных сталей, можно предотвратить двумя способами: снижением содержания углерода в стали до 0,03% (чтобы ограничить образование карбида хрома) и применением стали, стабилизированной ниобием или титаном, которые с углеродом образуют устойчивые карбиды.

Питтинг

Растворенный кислород обычно способствует пассивации нержавеющей стали за исключением случаев, когда происходит питтинговая коррозия (при наличии в среде хлоридов и бромидов.

Этот очень распространенный и очень опасный вид коррозии приводит к образованию сквозных изъязвлений, которые могут быть почти невидимы на поверхности. Вероятность питтинговой коррозии нержавеющей стали под действием растворов, содержащих хлориды, возрастает с увеличением количества воздуха в растворе.

Молибденсодержащие нержавеющие стали с высоким содержанием хрома и низким содержанием углерода (например, Z2CND13) относительно стойки к этому виду коррозии.

Общие закономерности возникновения питтинговой коррозии трудно установить, так как они зависят от многих факторов: pH среды, концентрации кислорода, температуры, солесодержа-ния, количества взвешенных веществ и т. д. В некоторых случаях для предотвращения питтинговой коррозии могут быть применены высокосортные сплавы, такие как уранус (Uranus).

Язвенная коррозия

Существует очень мало металлов, не подвергающихся этой разновидности коррозии. Она развивается в застойных зонах, где затруднена или полностью отсутствует диффузия кислорода. Особенно часто язвенная коррозия обнаруживается под слоем отложений, оксидов, биологических обрастаний, под неметаллическими, негерметичными соединениями и т. д.

Язвенная коррозия нержавеющих сталей представляет собой сложный процесс. Он инициируется дифференциальной аэрацией, ведущей к образованию маленьких ячеек, в которых удерживаются продукты коррозии.

Если коррозионной средой является, например, вода, содержащая кислород, которая практически нейтральна, но содержит хлориды, гидролиз первичных продуктов коррозии в ячейках приведет к образованию соляной кислоты, которая, достигнув некоторой критической концентрации, вызовет развитие язвенной коррозии. Поэтому язвенная коррозия характеризуется инкубационным периодом, который может продолжаться несколько месяцев.

Но если процесс коррозии начался, он развивается очень быстро. В таких случаях коррозия усиливается образованием локальных электрохимических элементов между пассивным и активным металлом, которые быстро разрушают пассивирующую пленку.

Если продукты коррозии смываются водой во время инкубационного периода, процесс язвенной коррозии прекращается полностью.

Наличие никеля и молибдена в стали увеличивает продолжительность инкубационного периода и, таким образом, повышается бероятность того, что процесс будет приостановлен на этот период. Однако, если инкубационный период закончился и начался процесс язвенной коррозии, его скорость для стали с высоким содержанием никеля и молибдена будет столь же велика, как и для стали с меньшим содержанием этих компонентов.

Читайте также  Гибкие дымоходы гофры из нержавеющей стали

Чтобы предотвратить возникновение язвенной коррозии, необходимо исключить условия, которые способствуют развитию дифференциальной аэрации. Для этой цели должны быть исключены все изменения концентрации кислорода в среде. Однако было бы неправильно предполагать, что путем насыщения среды кислородом и перемешиванием можно добиться состояния насыщения кислородом в трудно доступных зонах.

Источник: https://ssk2121.com/elektrohimicheskaya-korroziya-nerzhaveyuschey-stali/

Виды коррозии нержавеющей стали

Как и все металлы, нержавеющие стали в некоторых случаях могут подвергаться коррозии равномерно по всей поверхности. Если среда не обладает значительными окислительными свойствами, защитная пленка на поверхности металла может в конце концов исчезнуть, что приводит к общей коррозии (неустойчивая пассивность). Более того, состояние поверхности металла влияет на природу его пассивности; коррозионная стойкость максимальна, если поверхность металла не загрязнена частицами железа или различными отложениями.

Коррозия под напряжением

Коррозия под напряжением может происходить в аустенитных сталях, подвергающихся механическим напряжениям, которые или являются остаточными после предварительной обработки (штамповки, сварки), или возникают в процессе эксплуатации. Коррозия под напряжением может развиваться и в некоррозионной среде, но активизируется в присутствии горячих растворов хлоридов щелочных или щелочноземельных металлов. После инкубационного периода различной продолжительности коррозия под напряжением проявляется в виде быстро распространяющихся глубоких трещин.

Чтобы предотвратить развитие коррозии под напряжением, в некоторых случаях необходимо снять напряжения соответствующей термической обработкой.

Специальные виды коррозии нержавеющей стали

Как и при коррозий обычной стали, высокая скорость потока коррозионной жидкости может помешать образованию пассивирующей пленки и в результате будет развиваться локальная коррозия. Защитная пленка также может быть разрушена механическим абразивным воздействием твердых частиц, находящихся в жидкости.

Коррозия, вызванная образованием микропар, возникает в местах соединений различных металлов, например, в местах сварки между нержавеющей и мягкой сталью. В этом случае мягкая сталь становится анодом по отношению к нержавеющей стали и подвергается коррозии. С другой стороны, такое соединение может предотвратить питтинговую или язвенную коррозию нержавеющей стали 18—10 Мо.

Процесс холодной штамповки может привести к образовав нию механически упрочненного мартенсита, который является анодом по отношению к аустениту, составляющему остальную структуру, и поэтому становится преобладающей зоной коррозии. Этого явления можно избежать, используя низкоуглеродистые стали с высоким содержанием никеля, в которых аустениты очень стабильны.

Представители дочерней компании российской государственной корпорации Росатом United Corporation for Innovation LLC и Ассоциации 11.10.

2016 года, на реакторном здании энергоблока № 2 Нововоронежской АЭС-2, ООО «СТС», завершило работы Специалисты Росэнергоатома установили первые шпунтовые сваи на строительной площадке береговой инфраструктуры для плавучей тепловой Второй энергоблок атомной электростанции Heysham побил ранее установленный почти 22-летний рекорд непрерывной работы, проработав Корпорация по атомной энергии Индии (NPCIL) подключила в сеть энергоблок со станционным номером 2 Правительство Франции согласилось выплатить компенсацию государственной энергетической компании Electricite de France (EDF), чтобы закрыть В рамках усилий Международного агентства по атомной энергии (МАГАТЭ) по содействию информированности в области Сильная национальная приверженность к ядерной энергии идет рука об руку со слабой производительностью по Третий энергоблок японской АЭС Ikata префектуры Эхимэ достиг 100% рабочей мощности, сообщил представитель владельца Первая атомная электростанция Иордании может начать функционировать к 2025 году, если будет обеспечено достаточное На сайте правительства РФ был опубликован указ подписанный премьер-министром РФ Дмитрием Медведевым о строительстве На Нововоронежской АЭС включили в сеть шестой энергоблок, первый в мире энергоблок АЭС, построенный Чешская энергетическая компания ČEZ попросила Министерство охраны окружающей среды провести оценку воздействия на окружающую 19 июля в 18-58 на Кольской АЭС (филиал АО «Концерн Росэнергоатом» -«Кольская АЭС») действием Китайская цифровая аппаратура и система управления для атомных электростанций прошла независимую аттестацию Международным агентством Доля ядерной энергии от общей мировой установленной мощности снизится с 5% в 2015 году Болгария подписала соглашение с консорциумом из нескольких компаний о строительстве хранилища радиоактивных отходов для Шведский комитет по радиационной безопасности дал предварительное одобрение строительства на территории страны интегрированной системы Ядерный регулирующий орган Южной Кореи сегодня одобрил строительство энергоблоков со станционными номерами 5 и Шведская энергетическая компания Vattenfall утвердила инвестиции в модернизацию систем безопасности трех ядерных реакторов на Энергетический гигант Росэнергоатом, компания, управляющая всеми атомными электростанциями в России, приступил к строительству Курской В японской префектуре Фукусима, где в 2011 году произошла катастрофа на атомной электростанции, официально Ядерный регулирующий орган Испании одобрил продление еще на десять лет операционных лицензий для завода Выпускников Томского политехнического университета (ТПУ) будут готовить к работе на зарубежных атомных электростанциях. Соответствующее Второй энергоблок тайваньской АЭС Нью-Тайпей, которая принадлежит энергетической компании Taiwan Power Company’s (Taipower), отключился Первый энергоблок Курской АЭС в понедельник утром отключился из-за срабатывания автоматической защиты электрического генератора, Электрическая мощность ядерных реакторов Франции снизился примерно на 6 процентов в четверг и пятницу Участившиеся отклонения в работе АЭС на Украине происходят из-за снижения электрических нагрузок, которые возникли Министр исследований, технологии и высшего образования Индонезии Мохаммад Насир сказал, что Индонезия должна немедленно Желание Поднебесной стать главным игроком в атомной энергетике планеты может отрицательно отразиться на надежности

Источник: http://tesiaes.ru/?p=11249

Гальваническая коррозия алюминия

Процесс коррозии алюминия и алюминиевых сплавов зависит от многих факторов: условий окружающей среды, а также электрохимических и металлургических свойств компонентов сплава.

Коррозия алюминия

Для коррозии алюминия характерны следующие основные типы:

  • непосредственное химическое воздействие (общая коррозия);
  • электрохимическая (гальваническая) коррозия;
  • точечная (питтинговая) коррозия;
  • щелевая коррозия и коррозия под напряжением.

В зависимости от условий окружающей среды, нагружения и функционального назначения детали любой из видов коррозии может явиться причиной преждевременного разрушения. Кроме того, неправильное применение алюминиевых деталей и изделий может усугублять коррозионные процессы.

Электрохимическая коррозия алюминия

Наиболее частые ошибки проектирования алюминиевых конструкций связаны с гальванической коррозией. Гальваническая или электрохимическая коррозия происходит, когда два разнородных металла образуют электрическую цепь, замыкаемую жидким или пленочным электролитом или коррозионной средой. В этих условиях разность потенциалов между разнородными металлами создает электрический ток, проходящий через электролит, который (ток) и приводит к коррозии в первую очередь анода или менее благородного металла из этой пары.

Сущность гальванической коррозии

Когда два различных металла находятся в прямом контакте с электропроводящей жидкостью, то опыт показывает, что один из них может корродировать, то есть подвергаться коррозии. Это называют гальванической коррозией.

Другой металл не будет корродировать, наоборот, он будет защищен от этого вида коррозии.

Этот вид коррозии отличается от тех видов коррозии, которые могли бы возникнуть, если бы оба эти металлы были помещены раздельно в ту же самую жидкость. Гальваническая коррозия может случиться с любым металлом, как только два различных металла будут находиться в контакте в электропроводящей жидкости.

Внешний вид гальванической коррозии

Внешний вид гальванической коррозии является очень характерным. Эта коррозия не раскидывается по всей поверхности изделия, как это бывает с точечной – питтинговой – коррозий. Гальваническая коррозия плотно локализована в зоне контакта алюминия с другим металлом. Коррозионное воздействие на алюминий имеет равномерный характер, он развивается в глубь в виде кратеров, которые имеют более или менее округлую форму [3[.

Все алюминиевые сплавы подвергаются идентичной гальванической коррозии [3].

Принцип батареи

Гальваническая коррозия работает как батарея, которая состоит из двух электродов:

  • катода, где происходит реакция восстановления
  • анода, где происходит реакция окисления.

Эти два электрода погружены в проводящую жидкость, которая называется электролитом. Электролит – это обычно разбавленный кислотный раствор, например, серной кислоты, или соляной раствор, например, сульфат меди. Эти два электрода соединены снаружи электрической цепью, которая обеспечивает циркуляцию электронов. Внутри жидкости передача электрического тока происходит путем перемещения ионов. Жидкость, таким образом, обеспечивает ионное электрическое соединение (рисунок х).

Рисунок 1 – Принцип гальванической ячейки [3]

Рисунок 1 показывает ячейку, в которой электролитом является раствор серной кислоты. Серная кислота полностью диссоциирована в воде (поскольку является сильной кислотой) путем образования ионов Н+, которые определяют кислотность среды. Происходит следующая электрохимическая реакция [3]:

  • цинковый анод окисляется:

Zn → Zn2+ + 2e−

 на медном катоде восстанавливаются протоны Н+:

2Н+ + 2e− → Н2

Полная реакция имеет вид:

Читайте также  Можно ли сваривать нержавейку с черным металлом

Zn + H2O → Zn(OH)2 + H2

Эта ячейка производит электричество за счет потребления цинка, который выделяется в виде гидроксида цинка Zn(OH)2.

Для работы ячейки необходимо одновременное выполнение трех условий:

  • два различных металла, которые образуют два электрода;
  • присутствие электролита;
  • непрерывность всей электрической цепочки.

Если хотя бы одно из этих условий не выполняется, например, если нарушается электрический контакт, то ячейка не будет производить электричество, и окисления на аноде не будет происходить (также как и восстановления на катоде).

Условия для гальванической коррозии

Гальваническая коррозия основана на том же самом принципе и для того, чтобы она происходила необходимо одновременное выполнение следующих трех условий [3]:

  • различные типы металлов;
  • присутствие электролита;
  • электрический контакт между двумя металлами.

Различные типы металлов

Для любых металлов, которые относятся к различным их типам, гальваническая коррозия является возможной. Металл с электроотрицательным потенциалом (или более электроотрицательный металл, если они оба электроотрицательные) действует как анод.

Тенденцию различных металлов образовывать гальванические пары и направленность электрохимического действия в различных коррозионных средах (морской воде, тропическом климате, промышленной атмосфере и т.д.) показывают в так называемых гальванических рядах. Чем далее удалены друг от друга металлы в этих рядах, тем более серьезной может быть электрохимическая коррозия. В разных коррозионных средах эти последовательности металлов могут быть разными (рисунок 2).

Присутствие электролита

Область контакта должна быть смочена водным раствором, чтобы обеспечивать ионную электропроводимость. В противном случае отсутствует возможность для гальванической коррозии.

Электрический контакт между металлами

Электрический контакт между металлами может происходить или путем прямого контакта между двумя металлами, или через крепежное соединение, например, болт.

Рисунок 2 [1]

Как видно из графиков рисунка 2 алюминий и его сплавы становятся анодами в гальванических ячейках с большинством металлов, и алюминий корродирует, как говорят, жертвенно и защищает от коррозии другой металл гальванической пары.

Только магний и цинк, включая и оцинкованную сталь, являются более анодными и поэтому, сами подвергаясь коррозии, защищают от нее алюминий.

Алюминий и кадмий вообще имеют почти одинаковые электродные потенциалы и поэтому ни алюминий, ни кадмий не подвергаются гальванической коррозии. К сожалению, кадмий признан весьма токсичным и все реже применяется, а во многих странах просто запрещен, как антикоррозионная защита.

Гальванические пары

Относительное расположение двух металлов или сплавов в гальваническом ряду указывает только возможность гальванической коррозии, если различие их гальванических потенциалов является достаточно большим. Больше этот ряд ничего не говорит, и особенно ничего – о скорости или интенсивности гальванической коррозии. Она может быть нулевой или несущественной или даже незаметной. Ее интенсивность зависит от типов металлов, которые входят в контакт – гальванической пары.

Пара: алюминий — нелегированная сталь

В строительных конструкциях алюминиевые детали, которые открыты для воздействия климатических и погодных воздействий, могут соединяться винтами из обычной стали. Опыт показывает, что алюминий в контакте со стальными винтами подвергается только очень поверхностной коррозии.

Возникающая ржавчина, которая не оказывает никакого влияния на алюминий, полностью пропитывает слой оксида алюминия и образует на поверхности пятна.

Фактически, для алюминиевой конструкции в контакте с незащищенной сталью важнее будет ее влияние на внешний вид и декоративные качества, а не способность сопротивляться коррозии.

Это явление имеет следующее объяснение:

  • на поверхностях контакта образуются пленки с продуктами коррозии – ржавчины на стали и оксида алюминия на алюминии, которые и замедляют электрохимические реакции.

Пара: алюминий — оцинкованная сталь

Судя по гальваническому ряду, цинк является более электроотрицательным, чем алюминий. Крепеж из оцинкованной стали может, поэтому, применяться для соединения и сборки конструкций из алюминиевых сплавов. Надо помнить, что когда цинковое покрытие станет слишком изношенным, чтобы защищать сталь и алюминий, наступает предыдущий сценарий контакта между алюминием и голой сталью [3] .

Пара: алюминий — нержавеющая сталь

Хотя и существует большая разность потенциалов между нержавеющей сталью и алюминиевыми сплавами – около 650 мВ, очень редко можно увидеть гальваническую коррозию на алюминии в контакте с нержавеющей сталью. Поэтому алюминиевые конструкции очень часто собираются с применением болтов и винтов из нержавеющей стали [3].

Пара: алюминий — медь

Контакт между алюминиевыми сплавами и медью, а также медными сплавами (бронза, латунь) приводит к совершенно незначительной гальванической коррозии алюминия под воздействием атмосферных условий. Тем не менее, рекомендуется обеспечивать электрическую изоляцию между этими двумя металлами, чтобы локализовать коррозию алюминия.

Необходимо отметить, что продуктом коррозии меди является, так называемая,  патина. Эта патина – голубовато-зеленый налет на меди, который состоит в основном из карбоната меди. Эта патина химически воздействует на алюминий и может восстанавливаться с образованием малых частиц меди. Эти медные частицы, в свою очередь, могут вызывать локальную питтинговую коррозию алюминия [3].

Ближе к контакту — больше коррозия

Ускоренная  гальваническая коррозия обычно наиболее интенсивна вблизи мест соединения двух металлов; с удалением от мест соединения ее интенсивность уменьшается. Существенное влияние на скорость коррозии оказывает величина отношения площади поверхности катода, контактирующей с электролитом, к площади незащищенной поверхности анода. Желательно иметь малое отношение площади катода к площади анода. 

Как избежать гальванической коррозии

  1. Выбирать в пару алюминию или его сплаву металл, который как можно более ближе к нему в гальваническом ряду для рассматриваемой коррозионной среды (см. рисунок 2).
  2. Применять «катодный» крепеж. Избегать комбинаций с неблагоприятным (большим) отношением площадей катода к аноду (рисунок 3).
  3. Обеспечивать полную электрическую изоляцию двух соединяемых металлов. Это может быть выполнено с помощью изолирующих прокладок, втулок, шайб и т.п.

    (рисунок 4).

  4. Если применяется окраска, всегда нужно красить катод. Если покрасить только анод, любая царапина на нем даст неблагоприятное отношение поверхностей катода к аноду и приведет к коррозии царапины.
  5. Увеличивать толщину анода или устанавливать в соединение заменяемые массивные прокладки из анодного металла.
  6. По возможности размещать гальванический контакт вне коррозионной среды.

  7. Избегать резьбовых соединений из металлов, образующих гальваническую пару. Заменять их паяными или сварными соединениями.
  8. Если возможно, применять ингибиторы коррозии, например, в системах с циркуляцией жидкости, которая может играть роль электролита  для гальванической коррозии.

  9. В случаях, когда металлы должны оставаться в электрическом контакте через наружную электрическую цепь, нужно разнести их как можно дальше друг от друга для увеличения сопротивления жидкой цепи (электролита).
  10. При необходимости и там, где это возможно, применять катодную защиту с цинковым или магниевым жертвенными анодами.

  11. В наиболее агрессивных средах только цинк, кадмий и магний могут быть в контакте с алюминием без возникновения гальванической коррозии. Заметим, что применение кадмиевых покрытий в значительной степени ограничено из-за их экологической небезопасности.                                                  

Рисунок 3 [1]

Рисунок 4 [1]

 Источники:

  1. TALAT 5104.
  2. Corrosion of Aluminum and Aluminum Alloys. Edited by J.R. Davis. — ASM International, 1999.
  3. Corrosion of Aluminium / Christian Vargel – ELSEVIER, 2004.

Источник: http://aluminium-guide.ru/korroziya-alyuminiya-galvanicheskaya/

Ржавление нержавеющей стали

открыть разделы

Как ухаживать за водонагревателями с внутренним баком из нержавеюшей стали

Что такое нержавеющая сталь

Как корродирует нержавеющая сталь

Где возникает коррозия

1. Контаминация железом

2. Чистая и высоко очищенная вода

3. Ржавчина класса I 

4. Ржавчина класса II 

5. Ржавчина класса III

Выводы

Ссылки

Джон К. Тверберг. Перевод Владимира Воробьева.

Вы только что установили новую, полностью нержавеющую систему циркуляции воды – чистую, серебристую и красивую. Вы запустили свой технологический процесс, будучи уверенными, в том, что проблемы контаминации полностью решены. Но, по истечении нескольких месяцев, проба воды содержит бурую, желеобразную субстанцию в отобранной пробе.

Вы открываете систему и обнаруживаете, что резервуар содержит внутри по всей поверхности бурые отложения. Вы открываете насос и обнаруживаете, что лопасти также с красным налетом, спиральная камера и выпускные отверстия также с красным налетом. Вы заглядываете в теплообменник и видите еще больше этого цвета. Золотники клапанов имеют все тот же буроватый налет у отверстий подачи.

Что идет не так? Почему хорошая нержавеющая сталь поржавела?

Чтобы понять, что происходит, необходимо еще раз проанализировать основные сведения о нержавеющей стали и процессе коррозии.

Что такое нержавеющая сталь?

Нержавеющая сталь является железом с добавкой хрома, чтобы придать железу свойство сопротивления окислению. Другие вещества добавляются для придания особых свойств или свойств нержавения для особых сред использования. Главное помнить, что нержавеющая сталь в основе своей представляет железо (около 70% для типа 304L и 69% для типа 316L).

Как корродирует нержавеющая сталь?

Есть пять основных процесса, приводящих к коррозии нержавеющей стали: Однородная коррозия; Межкристаллитная коррозия; Гальваническая или обычная коррозия, включающая изъязвление и коррозию в трещинах; Коррозия в трещинах от механического воздействия; а также Коррозию, вызванную микробиологическими факторами (МИК). В дополнение, ряд механических процессов усиливает пять основных процессов образования ржавчины.

Эти процессы включают эрозию,  порообразование, истирание (отслаивание), образование коррозионных элементов, а также изменения поверхности под термическим или электрическим воздействием. Все эти процессы имеют одну общую черту: слой пассивации оксидом хрома нарушается, и незащищенная железная составляющая окисляется.

Для понимания явления ржавления рассмотрим только два процесса: Однородная или обычная коррозия и Изъязвляющая коррозия вместе с эрозией, изъязвлением и образованием коррозионных элементов.

Где возникает коррозия

Коррозия может возникать в чистой воде, сверхчистой воде, паре, очищенной питьевой воде или неочищенной технической воде. На сегодняшний день выявлено пять процессов.

1. Контаминация железом

Соединение нержавеющей стали с углеродистой сталью приведет к вытяжке железа на поверхности,  которые будут подвержены ржавчине при пуске в эксплуатацию. Приваривание временных крепежей из углеродистой стали к нержавеющей стали с последующей шлифовкой швов приводит к истиранию хромированного слоя, который будет корродировать при эксплуатации системы. Использование проволочных щеток из углеродистой стали или шлифовальных кругов, загрязненных углеродистой сталью, приведут к образованию ржавчины. Механизм образования ржавчины весьма прост:

ЖЕЛЕЗО + ВОДА + РЖАВЧИНА,

Лучшее средство предупреждения образования ржавчины диктуется здравым смыслом: всегда покрывать все поверхности из углеродистого железа деревом, пластмассой или картоном во избежание контакта с нержавеющей сталью; никогда не приваривать углеродистую сталь к нержавеющей стали; всегда использовать щетки из исключительно нержавеющей стали и шлифовальные круги «предназначенные исключительно для нержавеющей стали»; всегда производить химическую пассивацию азотной или лимонной кислотой перед вводом в эксплуатацию.

Ржавчина может вызвать изъязвление или точечное образование ржавчины на нержавеющей стали под воздействием окислителя, поэтому она должна быть удалена. Поэтому необходима пассивация, которая не только увеличивает коэффициент наличия хрома (по отношению к железу на поверхности), но и предотвращает любую контаминацию железом.

Используются два основных технических регламента для чистки и пассивации: «ASTM A 380 «Стандартные условия чистки, 2 удаления накипи и пассивации частей, оборудования и систем из нержавеющей стали»» и «ASTM A 967 «Стандартные условия обработки химической пассивации частей из нержавеющей стали». Как обработанная, так и не обработанная вода могут приводить к ржавлению (даже умягченная вода). Причиной является содержание воды – в первую очередь, бикарбонаты железа. Умягчение не удаляет анионы, такие как карбонаты, бикарбонаты, сульфаты, хлориды и т.п.

, а только обеспечивает обмен с катионами, такими как кальций и магний с содой и калием. В отличие от карбоната железа, бикарбонат железа полностью растворим, но легко окисляется до карбоната железа. Карбонат железа нерастворим и имеет буро-коричневый цвет. Он растворяется в сильных кислотах.

Обработанная или питьевая (пригодная для питья) вода обычно очищается для удаления взвешенных твердых частиц, фильтруется для удаления мельчайших частиц и, уничтоженных хлором или диоксидом хлора, бактерий. Данный процесс имеет незначительные последствия или не имеет последствий для ионов бикарбоната постольку, поскольку он уравнивается низким содержанием углеродистого железа в трубопроводе и содержанием кислорода. При попадании воды во внутреннюю среду, такую как нержавеющая сталь или фарфор, бикарбонаты начинают окисляться:

2Fe(HCO3)2 + Ca(HCO3)2 + Cl ® 2Fe(OH)3_+ CaCl2 + 4CO2 2Fe(OH)3 ® Fe203 + H2

Окись железа Fe203 становится бурым, и, когда это происходит, это называется появлением красного железняка. Сварной шов начинает корродировать, в связи с бурыми отложениями, по причине образования коррозионных элементов под воздействием ржавчины и хлорида кальция. В необработанной воде происходит подобная реакция, за исключением присутствия хлора, и кислорода, растворенного в воде, являющегося активным реагентом.

6Fe(HCO3)2 O2®2Fe2(CO)3_+2Fe (OH)2 + 4H2O

Карбонат железа начинает присутствовать и гидроксид железа образовывает желеобразную субстанцию, которая выявляется как окислы железа. Присутствует незначительное отклонение цвета, т.к. гидроксид железа желтого цвета. В больших резервуарах наиболее бурые отложения обычно сверху и уменьшаются ко дну. Весьма обычно наблюдать относительно чистое состояние большого резервуара.

2. Чистая и высоко очищенная вода

Чистая и высоко очищенная вода обычно используется в отраслях промышленности, где результат недостаточной очищенности может иметь существенные последствия: в таких как производство фармацевтической продукции или полупроводников. В фармацевтике она называется ВДИ или вода для инъекций. Типичная обработка предусматривает фильтрацию, умягчение, катионообмен и ионообмен, обратный осмос, обработку ультрафиолетом и, при необходимости, ионизацию.  Процесс дистилляции может использоваться в качестве окончательной очистки. В результате получаем воду с чрезвычайно низкой проводимостью.

Нержавеющая сталь типа 316L — обычный материал конструкции оборудования. Некоторые из этих комплексов остаются чистыми, но некоторые другие – ржавеют. Даже системы, которые прошли электрополировку, имеющие шероховатость поверхности менее 10 микродюймов (7 имеет обеспечивает меньшую возможность образования ржавчины, нежели жесткость рН < 7. Даже кратковременное воздействие хлорангидрида может стать отправной стадией ржавления, в особенности, если поверхность нержавеющей стали шероховатая.

Механически полированные поверхности хуже, нежели электрополированные поверхности, так как при полировальных операциях остаются микроскопические изъязвления. Электрополировка удаляет эти изъязвления и производит пассивирующий слой с более высоким соотношением Cr: Fe. Изъязвления образуют элементы коррозии, где могут концентрироваться растворы хлорангидрида и продолжать реагировать, даже если система в целом оснащена промывкой с высокой жесткостью воды.

Использование сильнодействующих ПАВ в растворе промывки будет способствовать удалению хлорида.

5. Ржавчина класса III

Данная ржавчина черная, а не бурая и образуется в присутствии пара высокой температуры. При первоначальном образовании она синяя, а затем становится черной, поскольку она нарастает до предельной толщины, предупреждающей дальнейшее проникание кислорода. Она может обнаруживаться в паровых системах высокой чистоты, работающих при высоких температурах.

На электрополированных поверхностях нержавеющей стали такая ржавчина блестяще черная, а на непассивированных механически полированных поверхностях она может быть матово черной. Ржавчина данного класса на электрополированной поверхности, образует октаэдрические кристаллы, полностью покрывающие поверхность.

Анализ с использованием рентгеновской фотоэлектронной спектроскопии показывает, что данный слой является полуторной окисью железа, обычно именуемой магнитным железняком. Он не удалется обычной чисткой, но может быть удален химическими средствами или шлифованием. Если ржавчина является блестяще черной, то ее можно оставить, так как она достаточно стабильна. Матовое покрытие слоем ржавчины может быть удалено и может потребовать чистки.

После химической чистки, обычно с использованием горячей щавелевой кислоты, поверхность должна быть химически пассивирована. При последующем пуске системы в эксплуатацию она вновь может почернеть, но, хотелось бы надеяться, без образования матового ржавого покрытия.

Данный тип ржавчины является продуктом реакции пара при высокой температуре с железом в нержавеющей стали, которая приводит к образованию магнитного железняка. Реакция происходит в два этапа:

3Fe0 + 4H2O ® FeO + Fe2)3 + 4H2 FeO + Fe2O3 ® Fe3O4

Часть оксида железа может замещаться оксидом никеля, но полуторная окись железа будет определять цвет покрытия.

Выводы

Ржавление нержавеющей стали является результатом образования оксида, гидроксида или карбоната железа от воздействия внешних источников или разрушения пассивирующего слоя. Варианты цвета зависят от типа оксида, гидроксида или карбоната и особенностей воды, участвующей в образовании молекул.

Цвет варьируется от оранжевого до бурого и черного.

Ярко бурые образования на поверхности нержавеющей стали обычно свидетельствуют о контаминации поверхности соприкасающейся углеродистой сталью, сваркой углеродистой стали с нержавеющей, воздействием с насыщенными железом шлифовальными кругами или металлическими щетками.

В неподготовленной воде изменение цвета может быть результатом окисления бикарбоната железа в воде, образующего неупорядоченные бурые отложения. Такое окисление может быть результатом добавления хлора или растворенного кислорода.

В системах воды высокой очистки ржавчина может быть трех типов: Класса I бурого цвета – от внешних источников (обычно – от эрозии или изъязвления поверхностей насосов); Класса II бурого цвета – от хлорида, вызывающего коррозию поверхностей из нержавеющей стали; Класса III бурого,  синего или черного цвета – обнаруживается в системах с паром высокой температуры.

Ссылки

1. Дж.К.Тревберг «Исследование ржавчины в системе высоко чистой воды из материала типа 316L: описание исследования» «Сборник «Все о воде»’98 Источник данных о фармацевтической отрасли, 2-3 июня 1998, Атлантик Сити, Нью Джерси

2. Дж.К.Тревберг и Дж. А.Ледден «Ржавление систем высоко чистой воды из нержавеющей стали», Институт международных исследований, Подготовка смены парадигм в подходах к высоко чистой воде, 27-29 октября 1999, Сан Франциско, калифорния

3. Алан В. Леви «Эрозия твердых частиц и эрозия-коррозия материалов», 1995, АСМ Интернешнл

Источник: https://teplo-spb.ru/stati/kak-eto-rabotaet/rzhavlenie-nerzhaveyushchey-stali.html

Понравилась статья? Поделить с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: