Магнитопорошковый контроль сварных соединений

Содержание

Магнитопорошковый контроль

Магнитопорошковый контроль сварных соединений

Производство дефектоскопических материалов для магнитопорошкового контроля. Магнитный порошок, готовая магнитная суспензия и основа для её приготовления, грунтовочная краска — расходные материалы для магнитопорошковой дефектоскопии, выпускаемые в России под торговой маркой ЭЛИТЕСТ® можно приобрести у наших дилеров.

Индикаторные материалы для МПД

Суспензия «Элитест ЧС2» Суспензия «Элитест ЛС4» Концентрат «Элитест ЛК4» Порошок «Элитест ЛП4» Масло «Элитест МЛ1» Краска грунт. «Элитест БК5» Очиститель «Элитест Р10»

Магнитопорошковый контроль (магнитный контроль, магнитопорошковая / магнитная дефектоскопия, МПД)

Магнитопорошковый неразрушающий контроль — один из способов обнаружения дефектов металла, залегающих непосредственно под поверхностью и выходящих на неё. Метод МПД основан на возникновении неоднородности магнитного поля в местах нарушений сплошности ферромагнитного материала (стали и сплавов на основе железа).

На первом этапе проведения магнитопорошкового контроля в детали создают остаточное, либо приложенное магнитное поле. Затем поверхность контролируемого изделия обрабатывают специальными дефектоскопическими средствами, — магнитными порошками и суспензиями.

Под действием электромагнитных сил частицы порошка или суспензии намагничиваются и сцепляются между собой в цепочки.

В качестве дефектоскопического материала может выступать магнитный порошок, с размером частиц от 1 микрона. Частицы порошка обладают ярко выраженными ферромагнитными свойствами и могут быть подкрашены активным пигментом — люминофором (люминесцентный магнитный порошок). Но чаще всего, в магнитопорошковом контроле используют готовую магнитную суспензию — взвесь магнитных частиц.

В качестве основы для взвеси выбирают масло (например, Элитест МЛ1) или воду — в зависимости от условий контроля и типа оборудования. В результате действия магнитного поля над дефектами возникает искривление его направления.

Магнитные частицы скапливаются в таких местах, образуя индикаторный рисунок, видимый при ультрафиолетовом освещении (люминесцентный контроль), либо при обычном освещении (в этом случае в качестве фона может использоваться грунтовочная краска).

Описанные явления составляют основу магнитопорошковой дефектоскопии.

Обзор магнитного метода контроля на примере его применения в авиастроении

Кроме диагностики отдельных элементов на стадиях производства и обслуживания, магнитопорошковый метод даёт возможность контролировать детали и узлы непосредственно в конструкции. Простота и эффективность метода обеспечили его широкое применение на авиаремонтных предприятиях и строевых частях военно-воздушных сил Российской Федерации.

В стальных деталях и узлах авиационной техники могут возникать трещины усталости, шлифовочные трещины, термические, волосовины и другие дефекты. При визуальном наблюдении эти дефекты не выявляются даже с помощью лупы. Магнитопорошковый метод позволяет эффективно обнаруживать невидимые глазу дефекты.

Для решения ряда задач магнитопорошковый контроль обладает преимуществами, выделяющими его среди других методов неразрушающего контроля. Так же как и капиллярный контроль, магнитная дефектоскопия позволяет выявлять поверхностные дефекты материалов, но чувствительность контроля при этом, будет значительно выше. При капиллярном контроле дефекты, расположенные близко к поверхности не выявляются. Для магнитопорошковой дефектоскопии подобного ограничения нет.

На чём основано обнаружение опасных трещин?

Метод основан на выявлении ферромагнитными частицами, взвешенными в жидкости или в воздухе магнитных полей рассеяния, возникающих над дефектами в стальных деталях. При контроле деталь намагничивают с применением специального оборудования — магнитных дефектоскопов. На крупных производствах, такие устройства представляют собой полуавтоматические линии для магнитопорошкового контроля, работающие по конвейерному принципу.

Физические основы метода магнитопорошкового неразрушающего контроля

При намагничивании объекта контроля возникает магнитное поле. Магнитный поток выходит из детали наружу только в местах трещин, образуя поле рассеяния. При этом, на краях трещин возникают магнитные полюсы. При намагничивании постоянным (выпрямленным) магнитным полем магнитный поток в детали и поле рассеяния остаются.

Ферромагнитные частицы, попадая в магнитное поле намагничиваются и под действием магнитных сил соединяются между собой в цепочки. На частицы также действуют силы:

  • затягивающая;
  • сила земного тяготения;
  • сила выталкивающего действия жидкости;
  • сила трения;
  • электростатического отталкивания.

Под действием результирующей силы, частицы притягиваются к трещине и накапливаются над ней. Опустим деталь в суспензию и посмотрим на процесс осаждения порошка над трещиной:

Частицы соединённые в цепочки над трещиной образуют валик из магнитного порошка, по которому определяют наличие дефекта.

Подготовка деталей к контролю

Перед началом контроля с поверхности изделия удаляются продукты коррозии, окалины, масляные и прочие загрязнения. Краска уменьшает чувствительность метода, поэтому при подготовке деталей к контролю её удаляют. При толщине слоя краски более 0,1 мм поле рассеяния практически замыкается в слое краски и дефекты не выявляются.

Если в качестве дефектоскопического индикатора предполагается использовать чёрную магнитную суспензию, то для обеспечения необходимого контраста при наблюдении результатов, на контролируемую поверхность наносится белая грунтовочная краска.

Способы намагничивания

Ключевыми факторами для выбора условий намагничивания являются: размер и форма объекта, ориентация и характер ожидаемых дефектов, наличие лакокрасочных покрытий и магнитные свойства изделия, подлежащего магнитопорошковому контролю. При этом следует учитывать, что намагничивающее поле, расположенное перпендикулярно направлению предполагаемых дефектов является наилучшим условием для их выявления.

При магнитопорошковом контроле применяют следующие виды и способы намагничивания (О — объект контроля; Ф — магнитный поток;
I — электрический ток):

Циркулярное намагничивание

Кольцеобразные детали намагничивают пропусканием тока по тороидной обмотке. При этом обнаруживаются радиальные дефекты на торцовых, и продольные на внутренней и внешней поверхностях.

Намагничивание деталей пропусканием по ним тока эффективно для обнаружения дефектов, расположенных на внешней поверхности. Такое намагничивание позволяет выявлять волосовины, продольные трещины и другие дефекты.

Намагничивание пропусканием тока по участку детали эффективно при контроле сварных соединений. При этом обнаруживаются трещины, распространяющиеся вдоль линий, соединяющих точки установки электроконтактов. Циркулярное намагничивание несъёмных деталей, проводят с применением кабеля и передвижного дефектоскопа — мощной понижающей силовой установки, способной генерировать токи до 10000 Ампер. В этом случае выявляются трещины на деталях непосредственно в конструкции летательного аппарата.

Намагничивание по стержню эффективно для обнаружения дефектов, расположенных на внешней поверхности.

Продольное (полюсное намагничивание)

Для полюсного намагничивания применяют передвижные, приставные, стационарные и переносные соленоиды. А также электромагниты. При полюсном намагничивании имеются некоторые особенности при осаждении порошка. Ограничимся рассмотрением поля только в межполюсном пространстве электромагнита.

Магнитные силовые линии проходят вдоль детали. В этом случае над трещиной поле рассеяния состоит из двух областей.

Области 1, в которой плотность силовых линий увеличивается и области 2 в которой плотность силовых линий уменьшается по мере приближения к поверхности детали. При уменьшении тока магнитные силовые линии деформируются, полярность краёв трещины изменяется. Область 2 располагается теперь по другую сторону трещины.

Частицы в области 1 накапливаются а из области 2 они вытягиваются и осаждаются либо над трещиной, либо на участках вне области 2.  В области 2 образуется зона не осаждения А. Эти зоны наиболее заметны при опылении деталей магнитным порошком в камере (способ опыления воздушной взвесью). В этом случае у трещин видны чёткие границы зон не осаждения.

Контактное намагничивание

Для намагничивания способом магнитного контакта, полюс магнита устанавливают на деталь обеспечивая хорошее прилегание полюсного наконечника и перемещают его по контролируемой поверхности. Этим способом обнаруживают трещины, расположенные перпендикулярно направлению перемещения магнита.

Размагничивание

Поля не размагниченных деталей могут вызывать погрешности в показаниях компаса, непредусмотренное срабатывания электромагнитных реле и элементов автоматики. Поэтому детали после контроля размагничивают. Намагниченная деталь может иметь максимальную остаточную индукцию. Размагничивание с применением катушки выполняют удалением из неё детали, или уменьшением силы тока.

Для размагничивания первым способом включают ток и в течение 10-15 секунд деталь перемещают вдоль оси катушки. При удалении индукция детали изменяя своё направление с частотой поля уменьшается до 0. На расстоянии более 70 см деталь оказывается размагниченной. Размагничивание уменьшением тока может осуществляться с помощью размагничивающего устройства с тоннелем.

Читайте также  Забор из сварной сетки своими руками

При уменьшении тока до 0 деталь размагничивается. Контроль размагниченности деталей проводят с помощью магнитометра МФ-24ФМ. Прибор имеет датчик феррозондового типа. Перед контролем устанавливают ток питания, указанный на этикетке, затем переключают прибор в режим контроля. Датчиком проводят по детали и контролируют показания.

Магнитные индикаторы

В ремонтных предприятиях для обнаружения дефектов, намагниченные детали погружают в ванны, или поливают их суспензией. Для приготовления суспензии применяют пасту, порошки окислов железа и поверхностно-активные вещества (ПАВ). В качестве дисперсионной среды применяют керосин, минеральное масло (например, Элитест МЛ1) или их смесь.

Размер основной массы частиц порошка составляет от 1 до 30 микрон. При воздействии магнитного поля частицы суспензии намагничиваются и соединяются между собой в цепочки. Если не применять ПАВ, то частицы суспензии под действием молекулярных сил слипаются в агрегаты. Находясь в жидкой среде они быстро выпадают в осадок.

На поверхности детали слипшиеся частицы образуют фон, мешающий обнаружению дефектов.

Введём в состав суспензии ПАВ. Ранее частицы соединялись в агрегаты. При введении ПАВ на частицах порошка происходит абсорбция его молекул. Между частицами возникают электростатические силы отталкивания, которые предотвращают слипание частиц.

С помощью микро кино установки при большом увеличении можно наблюдать, что частицы теперь не соединяются. В такой суспензии дефекты выявляются чётко, а фон из частиц порошка отсутствует.

Мнимые дефекты

В ряде случаев порошок осаждается в местах, где нет дефектов, выявляя, так называемые, мнимые дефекты. Так, например, по карбидной полосчатости или клацанью в околошовных зонах, так называемых, зонах термического влияния, на границе раздела двух структур основного материала и наплавленного кольца, имеющих различные магнитные свойства.

Как отличить мнимый дефект от трещины? Над мнимым дефектом порошок накапливается в виде хорошо заметных длинных цепочек. А над трещиной образуются чёткий валик в котором цепочки не различимы. Отличить мнимый дефект от трещины можно только в процессе накопления порошка.

При контроле встречаются мнимые дефекты типа «магнитная запись». Они возникают в результате касания ферромагнитным предметом намагниченной детали. Вот пример. Магнитопорошковым методом выявлен дефект на штоке передней стойки. Для проверки повторно намагнитим шток. При повторном намагничивании и нанесении суспензии осаждения порошка не произошло, следовательно, дефект мнимый.

Опыт магнитопорошкового контроля показал его высокую эффективность при обнаружении невидимых дефектов. Грамотное применение этого метода является необходимым условием предотвращения разрушения стальных деталей авиационных конструкций и поддержания высокой надёжности летательных аппаратов.

Ограничения магнитопорошкового метода контроля

Магнитопорошковый метод не позволяет определять глубину и ширину дефектов расположенных на поверхности контролируемого материала, глубину залегания подповерхностных дефектов и их размеры. Изделия из неферромагнитных сталей, цветных металлов не могут быть проконтролированы с помощью магнитопорошковой дефектоскопии. Существенная магнитная неоднородность материала также является препятствием для данного метода. Объектом контроля не может выступать сварной шов выполненный немагнитным электродом.

Источник: http://xn--e1afi0adc5e.xn--p1ai/magnitoporoshkovyj-kontrol

Контроль сварных швов в труднодоступных местах. Методы контроля

Работаю сварщиком на стройке. Опыт работы небольшой. Варю, в основном, трубы сантехнических систем. Довольно часто стыкую трубы, когда шов почти вплотную к стене. Приходится изощряться, изгибать электрод.
Но, это ещё полбеды. Голову-то между трубой и стеной не засунешь, чтобы посмотреть, как заварилось. Подскажите, пожалуйста, опытные сварщики, как вы из положения выходите в этом случае? Заранее благодарен!

Есть такая сложность в работе сварщиков. Особенно, при монтаже трубопроводов на подводных лодках. Вот там и стали впервые применять женское круглое зеркальце для контроля сварных соединений в труднодоступных местах.

Но, во-первых, не всегда есть возможность засунуть руку с зеркальцем между стеной и деталью, а во-вторых, иногда и варить необходимо с зеркалом, а рук не хватает! В одной держатель с электродом, в другой маска сварочная.

Вот тут-то на помощь и приходит инспекционное зеркало, которое можно предварительно закрепить в удобном положении, и через него наблюдать и контролировать процесс сварки. И руки свободны, и зона доступна!

Методы контроля сварных швов

Ответственные конструкции контролируют на отсутствие дефектов. Но не всегда можно различить дефекты невооруженным глазом или при некотором увеличении. Происходит это по причине того, что они могут сливаться с общим рельефом в силу своих небольших размеров или попросту находиться внутри шва, не выходя на поверхность.

Поэтому применяют разные неразрушающие методы контроля (НМК), призванные проявить все существующие изъяны.
Качество сварного шва сказывается на работе деталей и конструкций: ухудшаются их прочностные свойства, что может привести к разрушению в процессе работы. Системы, испытывающие постоянное или переменное давление, могут дать течь из-за микропор, микротрещин и т.д.

Вот почему на контрольную операцию отводится больше времени, внимания и затрат, чем на саму сварку.

Визуальный контроль

Не смотря на то, что он находится в ряду одних из самых неэффективных и несовершенных методов, тем не менее, он наиболее простой и распространенный. Контролируют ширину шва и его катет, если речь идет об угловом соединении, основные размеры; измеряют радиальные биения, поводки (коробления). Так же смотрят отсутствие пор, усадочных раковин, трещин, непроваров, подрезов, а в случае пайки еще и непропаев (читайте «Распространенные дефекты сварных швов»).

Шов должен быть равномерный, чистый, без видимых дефектов. Если обнаружено что-то, что не соответствует вашим критериям или требованиям технической или конструкторской документации, это всегда можно исправить подваркой проблемных мест, пока еще не произведена окончательная механическая обработка.

Проверка на герметичность

Если конструкция узла позволяет провести контроль качества шва на герметичность, это можно сделать несколькими способами:

1. Керосин имеет свойство проникать в мельчайшие поры и трещины. Например, если вы приварили днище к цилиндру – налейте в него немного керосина, за счет капиллярного эффекта даже наличие невидимых глазу дефектов станет очевидным — керосин просочится и проявится на наружной стороне стакана.

2. Если кроме герметичности нужно проверить узел еще и на прочность, керосин или другую рабочую жидкость подают с давлением в несколько раз превышающим рабочее. Контролируют отсутствие жидкости на сварных швах визуально или с помощью индикаторной бумаги.

3. Герметичность также можно проверить, подав в узел сжатый воздух давлением в несколько атмосфер. Такой узел опускают в дистиллированную воду и контролируют отсутствие пузырьков воздуха на его поверхностях.

Осуществляют при помощи УЗВ-дефектоскопов. Определяют данным методом скрытые дефекты, такие как трещины, непровары, включения шлака, засоры. Контролировать можно результаты аргонодуговой, электросварки, контактной, электронно-лучевой, диффузионной и других видов сварок.
Суть метода заключается в том, что посылаемый через металлическую деталь с помощью датчика ультразвук проходит ее насквозь, если не встречает препятствий. Как только появляется «полость», например, непроварившийся участок, звук отражается от него и попадает обратно в прибор, который и сигнализирует о проблеме.

Этот метод отбраковки также относится к НМК. В его основе лежит использование магнитных полей, если выражаться более точно, магнитных полей рассеяния, которые возбуждаются над участком расположения дефектов при местном намагничивании деталей. В качестве состава для индикации наносят ферромагнитный материал, размеленный в порошок (контролируемый материал тоже должен обладать ферромагнитной природой).

С помощью МК выявляют дефекты лежащие или выходящие на поверхность, а также находящиеся под поверхностью. Подповерхностные дефекты могут залегать на существенной глубине, интенсивность индикации напрямую зависит от размера дефекта. Чем он больше, тем выше величина магнитного рассеяния.
Дефектации подлежат литейные детали, полученные сваркой (швы), с эксплуатации.

Выявляют трещины различной природы образования, волосовины (пузырьки воздуха, вытягивающиеся в «линии» в процессе проката металла), непровары и другие дефекты, величиной от 0,001 мм.

МК имеет следующие достоинства:• Приборы МК высокочувствительны;• Простота технологии проверки деталей различных геометрических размеров и форм;• Некоторые элементы возможно контролировать не снимая с металлоконструкции;

• Высокая скорость дефектации.

Технологический процесс МК:• Подготовительные работы. Детали должны быть чистыми, промыты в нефрасе, ацетоне. оптимальная шероховатость Rа2,5 (смотрите ГОСТ 21105-87);• Намагничивание;• Погружение в ванну с индикаторной суспензией или нанесение ее ( в зависимости от типа используемых устройств: стационарное, переносное);

• Визуальный контроль полученной «картины» и разбраковка.

Второе название – капиллярная дефектоскопия. Метод очень надежный. Основан на использовании свойства состава индикаторной жидкости (пенетранта) проникать в мельчайшие трещины, поры, царапины, которые в результате последующей обработки можно проявить.

Таким образом, можно сделать видимыми дефекты, которые выходят на поверхность и не могут быть обнаружены ни с помощью визуального осмотра невооруженным глазом, ни даже при использовании микроскопов с большой кратностью окуляра из-за того, что они по цвету практически неотличимы от фона рассматриваемой сварной детали.Для примера, с помощью «капиллярки» можно выявить трещину с шириной развития менее 1 мкм.

Читайте также  Как правильно сварить чугун

После проведения  такого контроля все изъяны, выходящие на поверхность или имеющие раскрытие, будут подкрашены («подсвечены») в красный цвет, который хорошо выделяется на сером фоне металла. Проверке можно подвергать различные баки, трубы, металлические конструкции, изготовленные из стали и алюминия.

Однако метод требует присутствия обученного персонала и спецоборудования, что делает затруднительным его применение в кустарном производстве.

На снимке видны поры в сварном шве

Осуществляют по ГОСТ 7512-82 (pdf) «Контроль неразрушающий» и основан на способности различных материалов поглощать рентгеновские волны с различной степенью интенсивности. Например, металл поглощает волны больше, чем включения шлака. Соответственно на фотоснимке будут видны засоры и несплошности в металлической детали, они будут отражены более светлыми областями.

На практике метод показал высокую эффективность определения наличия вольфрамовых включений, засоров, пор и пористости, усадочных раковин, трещин и шлака, непроваров и т.д. и т.п.Кроме волн Ренгена используют изотопы иридия, селена, цезия и кобальта.С помощью метода контролируют трубопроводы, чаще всего магистральные газовые, нефтяные и технологического назначения по ОСТ 102-51-85 .

Так же есть смысл проверять, таким образом, металлические конструкции и различное производственное оборудование.

Способ не применяют, если:• Если направление развития дефекта не соответствует направлению просвечивания• Если размеры трещин, несплошностей и включений слишком малы для чувствительности рентгеном

Вывод: рентгенографическое исследование эффективно в рамках своей области применения, при расположении дефектов, например под острым углом, затрудняется их идентификация. Но если применять его в комплексе с ультразвуковой проверкой, надежность контроля увеличивается.

Источник: http://svarka-master.ru/kontrol-svarny-h-shvov-v-trudnodostupny-h-mestah/

Дефектоскопия сварных швов — виды контроля качества

Окончание сварных работ – это начало контроля качества сварных соединений. Ведь понятно, что от качества проведенных работ зависит долгосрочная эксплуатация сборной конструкции. Дефектоскопия сварных швов – это методы контроля сварных соединений. Их несколько, поэтому стоит разобраться в теме досконально.

Виды контроля сварных соединений

Существует видимые дефекты сварочного шва и невидимые (скрытые). Первые легко можно увидеть глазами, некоторые из них не очень большие, но при помощи лупы обнаружить их не проблема. Вторая группа более обширная, и располагаются такие дефекты внутри тела сварного шва.

Обнаружить скрытые дефекты можно двумя способами. Способ первый – неразрушающий. Второй – разрушающий. Первый вариант, по понятным причинам, используется чаще всего.

Неразрушающий способ контроля качества сварных швовВ этой категории несколько способов, использующихся для проверки качества сварных швов.

  • Визуальный осмотр (внешний).
  • Магнитный контроль.
  • Дефектоскопия радиационная.
  • Ультразвуковая.
  • Капиллярная.
  • Контроль сварных соединений на проницаемость.

Есть и другие способы, но используются они нечасто.

Визуальный осмотр

С помощью внешнего осмотра можно выявить не только видимые дефекты швов, но и невидимые. К примеру, неравномерность шва по высоте и ширине говорит о том, что в процессе сварки были прерывания дуги. А это гарантия, что шов внутри имеет непровары.

Как правильно проводится осмотр.

  • Шов очищается от окалин, шлака и капель металла.
  • Затем его обрабатывают техническим спиртом.
  • После еще одна обработка десятипроцентным раствором азотной кислоты. Она называется травление.
  • Поверхность шва получается чистой и матовой. На ней хорошо видны самые мелкие трещинки и поры.

Внимание! Азотная кислота – материал, разъедающий металл. Поэтому после осмотра металлический сварной шов надо обработать спиртом.

О лупе уже упоминалось. С помощью этого инструмента можно обнаружить мизерные изъяны в виде тонких трещин толщиною меньше волоса, пережоги, мелкие подрезы и прочие. К тому же при помощи лупы можно проконтролировать – растет ли трещина или нет.

При осмотре можно также пользоваться штангенциркулем, шаблонами, линейкой. Ими замеряют высоту и ширину шва, его ровное продольное месторасположение.

Магнитный контроль сварных швов

Магнитные методы дефектоскопии основаны на создании магнитного поля, которое пронизывает тело сварного шва. Для этого используется специальный аппарат, в принцип работы которого вложено явления электромагнетизма.

Есть два способа, как определить дефект внутри соединения.

  1. С использованием ферромагнитного порошка, обычно это железо. Его можно использовать как в сухом виде, так и во влажном. Во втором случае железный порошок смешивают с маслом или керосином. Его посыпают на шов, а с другой стороны устанавливают магнит. В местах, где есть дефекты, порошок будет собираться.
  2. С помощью ферромагнитной ленты. Ее укладывают на шов, а с другой стороны устанавливают прибор. Все дефекты, которые оказываются в стыке двух металлических заготовок, будут отображаться на этой пленке.

Этот вариант дефектоскопии сварных соединений можно использовать для контроля только ферромагнитных стыков. Цветные металлы, стали с хромникелевым покрытием и другие таким способом не контролируются.

Радиационный контроль

Это, по сути, рентгеноскопия. Здесь используются дорогие приборы, да и гамма-излучение вредно для человека. Хотя это самый верный вариант обнаружения дефектов в сварочном шве. Они четко видны на пленке.

Ультразвуковая дефектоскопия

Это еще один точный вариант обнаружения изъянов в сварочном шве. В его основе лежит свойство ультразвуковых волн отражаться от поверхности материалов или сред с разными плотностями. Если сварной шов не имеет внутри себя дефектов, то есть, его плотность однородна, то звуковые волны пройдут сквозь него без помех. Если внутри дефекты есть, а это полости, наполненные газом, то внутри получаются две разные среды: металл и газ.

Поэтому ультразвук будет отражаться от металлической плоскости поры или трещины, и вернется обратно, отображаясь на датчике. Необходимо отметить, что разные изъяны отражают волны по-разному. Поэтому можно итог дефектоскопии классифицировать.

Это самый удобный и быстрый способ контроля сварных соединений трубопроводов, сосудов и других конструкций. Единственный у него минус – сложность расшифровки полученных сигналов, поэтому с такими приборами работают только высококвалифицированные специалисты.

Капиллярный контроль

Методы контроля сварных швов капиллярным способом основаны на свойствах некоторых жидкостей проникать в тело материалов по самым мельчайшим трещинкам и порам, структурным каналам (капиллярам). Самое главное, что этим способом можно контролировать любые материалы, разной плотности, размеров и формы. Неважно, это металл (черный или цветной), пластик, стекло, керамика и так далее.

Проникающие жидкости просачиваются в любые изъяны поверхности, а некоторые из них, к примеру, керосин, могут проходить сквозь достаточно толстые изделия насквозь. И самое главное, чем меньше размер дефекта и выше впитываемость жидкости, тем быстрее протекает процесс обнаружения изъяна, тем глубже жидкость проникает.

Сегодня специалисты пользуются несколькими видами проникающих жидкостей.

Пенетранты

С английского это слово переводится, как впитывающий. В настоящее время существует более десятка составов пенетрантов (водные или на основе органических жидкостей: керосин, масла и так далее). Все они обладают малым поверхностным натяжением и сильной цветовой контрастностью, что позволяет их легко увидеть. То есть, суть метода такова: наносится пенетрант на поверхность сварочного шва, он проникает внутрь, если есть дефект, окрашивается с этой же стороны после очистки нанесенного слоя.

Сегодня производители предлагают разные проникающие жидкости с разным эффектом обнаружения изъяном.

  • Люминесцентные. Из названия понятно, что в их состав входят люминесцентные добавки. После нанесения такой жидкости на шов нужно посветить на стык ультрафиолетовой лампой. Если дефект есть, то люминесцентные вещества будут отсвечивать, и это будет видно.
  • Цветные. В состав жидкостей входят специальные светящиеся красители. Чаще всего это красители ярко-красные. Они хорошо видны даже при дневном свете. Наносите такую жидкость на шов, и если с другой стороны появились красные пятнышки, то дефект обнаружен.

Есть разделение пенетрантов по чувствительности. Первый класс – это жидкости, с помощью которых можно определить дефекты с поперечным размером от 0,1 до 1,0 микрона. Второй класс – до 0,5 микрон. При этом учитывается, что глубина изъяна должна превосходить его ширину в десять раз.

Наносить пенетранты можно любым способом, сегодня предлагаются баллончики с этой жидкостью. В комплект к ним прилагаются очистители для зачистки дефектуемой поверхности и проявитель, с помощью которого выявляется проникновение пенетранта и показывается рисунок.

Читайте также  Можно ли зарядить автомобильный аккумулятор сварочным аппаратом

Как это надо делать правильно.

  • Шов и околошовные участки необходимо хорошо очистить. Нельзя использовать механические методы, они могут стать причиной занесения грязи в сами трещины и поры. Используют теплую воду или мыльный раствор, последний этап – очистка очистителем.
  • Иногда появляется необходимость протравить поверхность шва. Главное после этого кислоту убрать.
  • Вся поверхность высушивается.
  • Если контроль качества сварных соединений металлоконструкций или трубопроводов проводится при минусовой температуре, то сам шов перед нанесением пенетрантов надо обработать этиловым спиртом.
  • Наносится впитывающая жидкость, которую через 5-20 минут надо удалить.
  • После чего наносится проявитель (индикатор), который из дефектов сварного шва вытягивает пенетрант. Если дефект небольшой, то придется вооружиться лупой. Если никаких изменений на поверхности шва нет, то и дефектов нет.

Керосин

Этот способ можно обозначить, как самый простой и дешевый, но от этого эффективность его не снижается. Его проводят по этой технологии.

  • Очищают стык двух металлических заготовок от грязи и ржавчины с двух сторон шва.
  • С одной стороны на шов наносится меловой раствор (400 г на 1 л воды). Необходимо дождаться, чтобы нанесенный слой просох.
  • С обратной стороны наносится керосин. Смачивать надо обильно в несколько подходов в течение 15 минут.
  • Теперь нужно наблюдать за стороной, где был нанесен меловой раствор. Если появились темные рисунки (пятна, линии), то значит, в сварочном шве присутствует дефект. Эти рисунки со временем будут только расширяться. Здесь важно точно определить места выхода керосина, поэтому после первого нанесения его на шов, нужно сразу проводить наблюдение. Кстати, точки и мелкие пятнышки будут говорить о наличие свищей, линии – о наличии трещин. Очень эффективен этот метод при стыковочных вариантах соединение, к примеру, труба к трубе. При сварке металлов, уложенных внахлест, он менее эффективен.

Методы контроля качества сварных соединений на проницаемость

В основном этот способ контроля используется для емкостей и резервуаров, которые изготовлены методом сварки. Для этого можно использовать газы или жидкости, которыми заполняется сосуд. После чего внутри создается избыточное давление, выталкивающее материалы наружу.

И если в местах сварки емкостей есть дефекты, то жидкость или газ тут же начнут через них проходить. В зависимости от того, какой контрольный компонент используется в проверочном процессе, различаются четыре варианта: гидравлический, пневматический, пневмогидравлический и вакуумный. В первом случае используется жидкость, во втором газ (даже воздух), третий – комбинированный. И четвертый – это создание внутри емкости вакуума, который через дефектные швы будет втягивать внутрь резервуара окрашивающие вещества, наносимые на внешнюю сторону шва.

При пневматическом способе внутрь сосуда закачивается газ, давление которого превышает номинальный в 1,5 раза. С внешней стороны на шов наносится мыльный раствор. Пузырьки покажут наличие дефектов. При гидравлической дефектоскопии в сосуд заливается жидкость под давлением в 1,5 раза превышающее рабочее, производится обстукивание околошовного участка. Появление жидкости говорит о наличии изъяна.

Вот такие варианты дефектоскопии трубопроводов, резервуаров и металлоконструкций сегодня используют для определения качества сварного шва. Некоторые из них достаточно сложные и дорогие. Но основные просты, поэтому и часто используемые.

Поделись с друзьями

Источник: https://svarkalegko.com/tehonology/defektoskopiya-svarnyh-soedinenij.html

Магнитопорошковый метод контроля (МПД)

Магнитопорошковый метод — один из самых распространенных методов неразрушающего контроля стальных деталей. Он нашел широкое применение в авиации, железнодорожном транспорте, химическом машиностроении, при контроле крупногабаритных конструкций, магистральных трубопроводов, объектов под водой, судостроении, автомобильной и во многих других отраслях промышленности.

Масштабность применения магнитопорошкового метода объясняется его высокой производительностью, наглядностью результатов контроля и высокой чувствительностью. При правильной технологии контроля деталей этим методом обнаруживаются трещины, усталости и другие дефекты в начальной стадии их появления, когда обнаружить их без специальных средств трудно или невозможно.

Магнитопорошковый метод предназначен для выявления поверхностных и под поверхностных (на глубине до 1,5 … 2 мм) дефектов типа нарушения сплошности материала изделия: трещины, волосовины, расслоения, не проварка стыковых сварных соединений, закатов и т.д.

Суть магнитопорошкового контроля

Магнитный поток в бездефектной части изделия не меняет своего направления; если же на пути его встречаются участки с пониженной магнитной проницаемостью, например дефекты в виде разрыва сплошности металла (трещины, неметаллические включения и т.д.), то часть силовых линий магнитного поля выходит из детали наружу и входит в нее обратно, при этом возникают местные магнитные полюсы (N и S) и, как следствие, магнитное поле над дефектом.

Так как магнитное поле над дефектом неоднородно, то на магнитные частицы, попавшие в это поле, действует сила, стремящаяся затянуть частицы в место наибольшей концентрации магнитных силовых линий, то есть к дефекту. Частицы в области поля дефекта намагничиваются и притягиваются друг к другу как магнитные диполи под действием силы так, что образуют цепочные структуры, ориентированные по магнитным силовым линиям поля.

Наибольшая вероятность выявления дефектов достигается в случае, когда плоскость дефекта составляет угол 90грд. с направлением намагничивающего поля (магнитного потока). С уменьшением этого угла чувствительность снижается и при углах, существенно меньших 90грд. дефекты могут быть не обнаружены.

Способы нанесения индикатора

«Cухой» и «мокрый» способы нанесения индикатора на контролируемый объект. В первом случае для обнаружения дефектов используют сухой ферромагнитный порошок. При использовании «мокрого» метода контроль осуществляется с помощью магнитной суспензии, т.е. взвеси ферромагнитных частиц в жидких средах: трансформаторном масле, смеси трансформаторного масла с керосином, смеси обыкновенной воды с антикоррозионными веществами.

Виды намагничивания

При магнитопорошковом методе контроля применяют четыре вида намагничивания:

  • циркулярный; 
  • продольный (полюсной); 
  • комбинированный; 
  • во вращающемся магнитном поле.

Наиболее распространены в практике контроля три первых вида намагничивания. Применительно к простейшим деталям – сплошному цилиндрическому стержню или полому цилиндру – формулировка видов намагничивания может быть следующая.

Циркулярный – это такой вид намагничивания, при котором магнитное поле замыкается внутри детали, а на ее концах не возникают магнитные полюса.

Продольный (полюсной) – это такой вид намагничивания, при котором магнитное поле направлено вдоль детали, образуя на ее концах магнитные полюса.

Комбинированный – это такой вид намагничивания, при котором деталь находится под воздействием двух или более магнитных полей с неодинаковым направлением.
 

Этапы магнитопорошкового контроля

1. Подготовка детали к контролю.
Подготовка детали к контролю заключается в очистке поверхности детали от отслаивающейся ржавчины, грязи, а также от смазочных материалов и масел, если контроль проводится с помощью водной суспензии или сухого порошка. Если поверхность детали темная и черный магнитный порошок на ней плохо виден, то деталь иногда покрывают тонким просвечивающим слоем белой контрастной краски.

2. Намагничивание детали.
Намагничивание детали является одной из основных операций контроля. От правильного выбора способа, направления и вида намагничивания, а также рода тока во многом зависит чувствительность и возможность обнаружения дефектов.

3. Нанесение на поверхность детали магнитного индикатора (порошка или суспензии).
Оптимальный способ нанесения суспензии заключается в окунании детали в бак, в котором суспензия хорошо перемешана, и в медленном удалении из него. Однако этот способ не всегда технологичен. Чаще суспензию наносят с помощью шланга или душа.

Напор струи должен быть достаточно слабым, чтобы не смывался магнитный порошок с дефектных мест. При сухом методе контроля эти требования относятся к давлению воздушной струи, с помощью которой магнитный порошок наносят на деталь.

Время стекания с детали дисперсной среды, имеющей большую вязкость относительно велико, поэтому производительность труда контролера уменьшается.

4. Осмотр детали. Расшифровка индикаторного рисунка и разбраковка. Контролер должен осмотреть деталь после стекания с нее основной массы суспензии, когда картина отложений порошка становится неизменной.

Детали проверяют визуально, но в сомнительных случаях и для расшифровки характера дефектов применяют оптические приборы, тип и увеличение которых устанавливают по нормативным документам.

5. Размагничивание и контроль размагниченности. Удаление с детали остатков магнитного индикатора.
Применяют два основных способа размагничивания:

  • Первый и наиболее эффективный из них — нагрев изделия до температуры точки Кюри, при которой магнитные свойства материала пропадают. Этот способ применяют крайне редко, так как при таком нагреве могут изменяться механические свойства материала детали, что в большинстве случаев недопустимо.
  • Второй способ заключается в размагничивании детали переменным магнитным полем с амплитудой, равномерно уменьшающейся от некоторого максимального значения до нуля.

Источник: http://etalon-rk.ru/magnitoporoshkovyj-metod-kontrolya-mpd/

Понравилась статья? Поделить с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: